

1

Best Practice mini-guide "Avitohol"

HP

Content by:

IICT-BAS staff

Compiled from: http://www.hpc.acad.bg/documentation

Editor: Emanouil Atanassov

IICT-BAS

For updates please check http://www.hpc.acad.bg

March 2016

2

Table of Contents

1. Introduction ... 3

2. System architecture and configuration .. 3

2.1. System configuration .. 3

2.2. Filesystems ... 4

3. System Access ... 4

3.1. Remote access .. 4

3.2. Using compute resources on Avitohol ... 5

3.3. Interactive debug runs ... 5

4. User environment and programming ... 5

4.1. Batch System .. 5

4.2. Compilers .. 7

4.3. Parallel Programming ... 7

4.4. Parallel MPI applications .. 8

4.5. Multithreaded (OpenMP or hybrid MPI/OpenMP) applications.. 8

4.6. Using MKL mathematical library on Avitohol ... 8

4.7. Numerical Libraries ... 9

4.8. I/O Libraries .. 10

4.9. Miscellaneous Libraries .. 10

4.10. Other software ... 10

5. Programming Tools ... 10

5.1. Debugging ... 10

5.2. Profiling and Performance Analysis .. 11

6. Conclusion ... 11

3

1. Introduction

In June 2015, the new supercomputer was deployed at IICT-BAS. The cluster consists of 150 HP Cluster Platform SL250S

GEN8 servers.

Each compute node had 2 Intel Xeon CPU E5-2650 v2 @ 2.6 GHz (8 cores each), 64GB RAM and 2 Intel Xeon Phi 7120P

coprocessors (with 61 cores each). Thus, in total there are 20700 cores.

Additionally, there are 4 I/O nodes to serve the 96 TB of disk storage.

The name of the system, deployed by HP, is Avitohol.

Avitohol cluster currently has the following capabilities: theoretical peak performance of 412.32 TFlop/s, total memory

9600 GB and total disk storage of 96 TB.

It is ranked at 389th place on the November 2015 Top 500 list (http://www.top500.org) with LINPACK performance of

264.2 TFlop/s.

Figure 1. Avitohol HPC system

2. System architecture and configuration
2.1. System configuration

The current system configuration includes:

 150 dual-socket nodes HP ProLiant SL250S Gen8

 1 of them reserved for login/job submission and application development

 4 I/O nodes HP ProLiant DL380p Gen8 with 2 Intel Xeon CPU E5-2650 v2, 64GB RAM, Fibre Channel cards

 2 management nodes HP ProLiant DL380p Gen8 with 2 Intel Xeon CPU E5-2650 v2, 64GB RAM

 96 TB of online disk space, connected with Fibre Channel with the I/O nodes.

 Fully non-blocking 56Gbps FDR InfiniBand network interconnecting all the nodes above

Configuration of the computing nodes:

• Processors: dual Intel Xeon 8-core CPU E5-2650 v2 @ 2.6 GHz,

• Coprocessors: two Intel Xeon Phi 7120P coprocessors, 16 GB RAM and 61 cores each one

• Main memory of the compute nodes: 64 GB (9.6 TB in total)

• Memory of the accelerators: 16 GB (4.8 TB in total)

http://www.top500.org/

4

Operating system

Operating system on Avitohol is Red Hat Enterprise Linux release 6.7.

The coprocessors run MPSS version 3.6-1.

2.2. Filesystems

The Avitohol system is relatively new. That is why currently the only filesystem that is read-write for all users is the /home

filesystem, which is of type Lustre. Groups of users may request to have a shared directory so that they can share data

between them.

Some software that is made available to all users is available under /opt and is typically deployed using environment

modules. This filesystem is shared via NFS and is read-only for users.

Currently the Lustre filesystem is provided from only two OSTs. This effectively means that one big file may be served

from two storage servers, if this file is created in appropriate way.

To convert a directory to “stripe” files in this way one can do the following:

lfs setstripe <filename|dirname> --count 2

to set file or directory to use striping with 2 OSTs in parallel.

Currently there only setting the count to two may be advisable if high I/O rates are expected for files in a given directory.

The Lustre filesystem is optimized for processing of large files. This means that creating large amount of small files may

be relatively slow process. However, one can use the /dev/shm filesystem on each node, which is in the RAM, if fast

processing of high number of small files is necessary. This filesystem is not shared between nodes and does not survive

restarts! For most users its use is not needed.

Further reading

For more information about the Lustre filesystem, consult Lustre documentation. See, e.g.,

https://wiki.hpdd.intel.com/display/PUB/HPDD+Wiki+Front+Page

Further details

Applications with high I/O requirements can request dedicated storage.

3. System Access
3.1. Remote access

The gateway node for accessing Avitohol is the node gw.avitohol.acad.bg. The key fingerprints are currently:

1024 cd:97:16:41:2c:cd:3d:59:c4:f0:d2:67:ce:1c:5e:62 /etc/ssh/ssh_host_dsa_key.pub (DSA)

2048 b9:e3:6f:f5:a2:ea:8f:95:0a:96:5b:55:03:0c:bf:e9 /etc/ssh/ssh_host_rsa_key.pub (RSA)

For security reasons it is advisable for users to use keys with at least 2048 bits.

Access can be done with ssh protocol.

The gateway node has identical hardware and software configuration (as much as possible) with the execution nodes.

Only this node can be used for launching jobs.

Once inside the cluster, the user can login with ssh to any of the execution nodes where he or she has a running job or to

the Xeon Phi accelerators that are associated with such nodes.

5

3.2. Using compute resources on Avitohol

The login node gw.avitohol.acad.bg is mainly intended for editing, compiling and submitting compute-intensive

programs. Some lightweight testing of parallel programs is allowed. In case of doubt, users are encouraged to submit a job

requesting one whole compute node and use it for debugging and development.

The execution nodes are named sl001-sl150.

3.3. Interactive debug runs

If you need to debug your program code you may login to the node gw.avitohol.acad.bg and run your code interactively.

This node has two CPUs and two Xeon Phi coprocessors in the same way as the execution nodes.

Please monitor resource utilization and in case the system becomes overloaded (as can be seen from running top) cancel

the debug runs and perform them via job submission on an execution node, where you will get dedicated access. Users that

cause system crashes of the node or system crashes or hangs on the Xeon Phi coprocessors should try to resolve the issues

with their codes using execution nodes allocated by the batch system. If the problems persist they are encouraged to contact

system administrators.

The support email is:

 avitohol-support@parallel.bas.bg.

Further details

There are other ways of accessing storage from the system, which do not concern most users. If your storage needs exceed

one terabyte, please describe them fully in the access form. Access to different interfaces can be provided based on

evaluation of these needs.

The Xeon Phi coprocessors are visible as sl001-mic0 to sl150-mic0 and sl001-mic1 to sl150-mic1. Users are expected to

use them only after obtaining exclusive access to the corresponding execution node.

4. User environment and programming
4.1. Batch System

The login node gw.avitohol.acad.bg of the Avitohol HPC system is intended mainly for editing and compiling of parallel

programs. Interactive usage of mpirun/mpiexec is allowed on the login node and its coprocessors, although it should not

be necessary. It is advisable to switch to using a dedicated node obtained through the batch system if such parallel runs

take more than a few minutes or use lots of memory.

To run test or production jobs, submit them to the torque batch system, which will find and allocate the resources required

for your job (e.g. the compute nodes to run your job on).

Short test jobs (shorter than 15 min) with 2, 4 or 8 cores will run with short turn-around times. However, the use of partial

nodes (i.e., less than 16 cores from one node) is discouraged. The use of multiple partial nodes, e.g., by requesting 10 nodes

with 4 cores, is strongly discouraged.

By default, the job run limit is set to 24 hours on Avitohol. If your batch jobs can't run independently from each other,

please use job steps or contact the system administrators helpdesk using the email address

 avitohol-support@parallel.bas.bg.

The Intel processors support the "Hyperthreading / Simultaneous Multithreading (SMT)" mode which might increase the

performance of your application by up to 20%. However, we leave to the users to decide whether to use Hyperthreading or

not. Currently the execution nodes are declared to have 16 CPU cores in torque, although the Linux OS sees 32 (logical)

cores.

It is encouraged for users to request multiples of full nodes, e.g., by adding

#PBS -l nodes=100:ppn=16

6

in the PBS script you can ask for 100 dedicated nodes.

With hyperthreading, you have to increase the number of actual MPI processes or OpenMP threads to 32 instead of 16 for

each node.

However, it is best to first measure the performance on a realistic benchmark problem to see if hyperthreading is actually

useful. In both cases, with and without hyperthreading, the request for nodes to PBS will be the same, but the mpirun

command line would change.

For example, one can compare the performance of the same executable testprogram with and without hyperthreading on

100 nodes measuring the execution times of:

mpirun –f hostfile -np 1600 -ppn 16 ./testprogram

vs

mpirun –f hostfile -np 3200 -ppn 32 ./testprogram

The file with name hostfile can should contain the list of all nodes in the job. This can be achieved by doing

cat $PBS_NODEFILE| sort |uniq > hostfile

Please be aware that with 32 tasks-per-node each process gets only half of the memory by default. In the Avitohol cluster,

there are 150 compute nodes available with 64 GB of real memory (some is taken by the OS). So, on these 150 nodes, you

can expect to have 2 GB per core for MPI jobs with hyperthreading or 4 GB per core for MPI jobs without hyperthreading.

The default Parallel Environment is Intel MPI. You can use executables that were built with other MPI libraries. For

example, openmpi is also available system-wide.

For each execution node there are two associated Xeon Phi coprocessors. For example, on node sl039 the coprocessors are

available via ssh or for mpiexec with the names sl039-mic0 and sl039-mic1.

Each coprocessor is running its own operating system, which means that it appears as separate machine.

For each execution node there are alternative names that correspond to alternative network interfaces, associated with the

InfiniBand cards. For example, ibsl039 corresponds to the IP-over-InfiniBand network interface ib0 on host sl039.

The same type of IP-over-InfiniBand interfaces are available on the coprocessors, for example ibsl039-mic0 and ibsl039-

mic1.

Although these interfaces offer higher bandwidth than the standard Ethernet interfaces, they are not necessary for normal

use, because MPI jobs are expected by default to use native InfiniBand and not IP-over-InfiniBand.

The Lustre filesystem already uses native InfiniBand transport and since the files are shared between nodes and it is even

available on the coprocessors, necessity for data movement between nodes via the IP-over-InfiniBand interface may be

indication for sub-optimal use of the system.

InfiniBand is also the default transport for MPI when using the coprocessors via MPI.

Once a given user has obtained exclusive access to an execution node he or she can also use the corresponding Xeon Phi

coprocessors. Inside a job script one may read the contents of the file pointed by the environment variable PBS_NODEFILE

and obtain the names of the corresponding Xeon Phi nodes. The access to the Xeon Phi coprocessors is not managed

separately.

However, users are not allowed to login with ssh to nodes where they do not have running jobs. To determine which nodes

have been allocated to a given job, the user can run

qstat –na <jobnumber>

Users are not expected to use Xeon Phi coprocessors without first requesting their host node from the batch system.

Further reading

7

• For more information about using torque batch system and moab scheduler please see the documentation from

the website of the software provider: www.adaptivecomputing.com.

4.2. Compilers

The Intel Fortan (ifort) and C/C++ (icc, icpc) compilers are the default compilers on the HPC cluster Avitohol and

are provided automatically at login (see the output of module list for details on the version).

To compile and link MPI codes using Intel compilers, use the commands mpiifort, mpiicc or mpiicpc, respectively.

The GNU compiler collection (gcc, g++, gfortran) is available as well. A default version comes with the operating

system. Version 4.4.7 is installed on Avitohol system. More recent versions can be accessed via environment modules. To

compile and link MPI codes using GNU compilers, use the commands mpicc, mpic++/mpicxx, mpif77 or

mpif90, respectively.

The compilation for the Xeon Phi is usually done at the host, i.e., using cross-compilation.

To load the development environment for the Xeon Phi one can issue

source /opt/mpss/3.6/environment-setup-k1om-mpss-linux

Then the version of the compiler and other development tools can be accessed with something like:

k1om-mpss-linux-gcc

k1om-mpss-linux-g++

k1om-mpss-linux-nm

Invoke the command module avail to get an overview on all compilers and versions available on Avitohol.

Modules environment

• For more information on general Modules usage please refer to the PRACE Generic x86 Best Practice Guide

[http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Generic-x86.pdf].

• For more information about using MPSS consult the documentation from Intel

[https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide]

4.3. Parallel Programming

On the Avitohol HPC cluster two basic parallelization methods are available.

MPI The Message Passing Interface provides a maximum of portability for distributed memory

 parallelization over a large numer of nodes.

OpenMP OpenMP is a standardized set of compiler directives for shared memory parallelism. On

 Avitohol a pure OpenMP code is restricted to run on a single node (whether the host or the

coprocessor system).

It is possible to mix MPI and OpenMP parallelism within the same code in order to achieve large scale parallelism.

Because of the presence of Xeon Phi accelerators, they are also available on the coprocessors, and all the modes of using

coprocessors - native, symmetric and offload, are available.

Each Xeon Phi coprocessor can run OpenMP programs in native mode. The number of physical cores on a coprocessor is

61. It is advisable to reserve one core for the operating system use and to use at most 60 cores. However, the number of

logical cores on the coprocessor is 4 times the number of physical cores, thus 244. Experience has shown that using number

of threads higher than the number of physical cores can be beneficial. Users can try to find which setting of the number of

threads for OpenMP via the variable OMP_NUM_THREADS (in native mode) or MIC_OMP_NUM_THREADS (in

offload mode) is acceptable. In many cases 120 seems to be a good compromise.

For the programs that run on the host the number of threads may be set equal to the number of CPU cores (16) or number

of logical cores (32) if only OpenMP is used. If a hybrid MPI/OpenMP program is run, one must take into account how

many MPI processes are running on one node. For example, if two MPI processes are run on each node, then

OMP_NUM_THREADS should be set to 8 to use all physical cores or 16 to use all logical cores.

8

4.4. Parallel MPI applications

By default, the Intel compilers for Fortran/C/C++ are available on Avitohol.

The MPI wrapper executables are mpiifort, mpiicc and mpiicpc. These wrappers pass include and link information

for MPI together with compiler-specific command line flags down to the Intel compiler.

The parallel program can be started with mpiifort. We remind that environmental variable can be passed via options.

For example, to set the variable MKL_MIC_ENABLE to 1, thus enabling automatic offload for all MPI processes, one can

add

-genv MKL_MIC_ENABLE 1

to the mpiexec command line.

Batch jobs

For production runs it is necessary to run the MPI program as a batch job. Please see Section 4.1, “Batch System” for

further information.

Environment variables

Some environment variables may give information about software that does not come directly from the operating system

distribution. Examples are some build tools like ant/maven, which are provided.

4.5. Multithreaded (OpenMP or hybrid MPI/OpenMP) applications

To compile and link OpenMP applications pass the flag –qopenmp (which replaces the former option –openmp, which is

now deprecated) to the Intel compiler, or –fopenmp to the gcc compiler.

In some cases it is necessary to increase the private stack size of the treads at runtime, e.g. when threaded applications exit

with segmentation faults. On Avitohol the thread private stack size is set via the environment variable KMP_STACKSIZE.

The default value is 4 megabytes (4MB). For example, to request a stack size of 128 megabytes on Avitohol, set

KMP_STACKSIZE=128m.

Beware that on the coprocessor the practical limit for number of threads is 244 (61 hardware threads times 4 due to

hyperthreading). Thus using high numbers for KMP_STACKSIZE may crush the application.

Note
Applications occasionally may use swap memory. In general such application behavior is undesirable and

strongly discouraged. It is presumed to be a result of application mis-configuration or error in the input.

Users are expected to cancel jobs that they observe to be swapping and try and correct the errors. If they

believe that this is normal behavior, they should discuss this with system administrators.

For information on compiling applications which use pthreads please consult the Intel compiler documentation

[http://software.intel.com/en-us/articles/intel-c-composer-xe-documentation/#lin].

4.6. Using MKL mathematical library on Avitohol

Intel Math Kernel Library overview

The Intel Math Kernel Library (MKL) is provided on Avitohol. MKL provides highly optimized implementations of

(among others)

• LAPACK/BLAS routines,

• direct and iterative solvers,

• FFT routines,

• ScaLAPACK.

Parts of the library support thread or distributed memory parallelism.

By setting the environment variable MKL_MIC_ENABLE to 1, e.g., by

9

MKL_MIC_ENABLE=1
in bash shell, one can enable the automatic offload of some library routines to the Xeon Phi coprocessors that are available.

For using this option with MPI, see above.

Note

Extensive information on the features and the usage of MKL is provided by the official Intel MKL documentation

[http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation/].

About the automatic offload one can consult:

https://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf

Linking programs with MKL

By default, an MKL environment module is already loaded. The module set the environment variables MKL_HOME and

MKLROOT to the installation directory of MKL. These variables can then be used in makefiles and scripts.

The Intel MKL Link Line Advisor is often useful to obtain information on how to link programs with MKL. For example,

to link statically with the threaded version of MKL on Avitohol (Linux, Intel64) using standard 32 bit integers, something

like these must be added to the Makefile when invoking the Intel compiler:

-Wl,--start-group

$(MKLROOT)/lib/intel64/libmkl_intel_lp64.a

$(MKLROOT)/lib/intel64/libmkl_intel_thread.a

$(MKLROOT)/lib/intel64/libmkl_core.a

-Wl,--end-group -lpthread -lm –qopenmp

(in one line). If compiling directly in bash, one must use ${MKLROOT} instead of $(MKLROOT).

4.7. Numerical Libraries

FFTW

The so-called "Fastest Fourier transforms in the West/World" software is installed. Currently the version of FFTW 3 that

comes with the OS is 3.2.3 and is available in the standard locations for development software.

PETSc

A suite of data structures and routines for the scalable (MPI parallel) solution of scientific applications modeled by partial

differential equations. Available as a module.

SLEPc

Library for the solution of large scale sparse eigenvalue problems on parallel computers. Available as a module.

GSL

The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers (the FGSL FORTRAN addon

interface is installed). GSL provides a wide range of mathematical routines such as random number generators, special

functions and least-squares fitting. Available as part of the OS distribution.

Python modules

The Python version from the OS distribution is of the 2.6 series. The latest current 2.7 series version is available as a

module. The tensorflow module is available as part of the 2.7 installation.

10

4.8. I/O Libraries

NetCDF

NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation,

access, and sharing of array-oriented scientific data. Available as a module (version 4).

4.9. Miscellaneous Libraries

1. Boost: The Boost C++ libraries provide many classes and routines for various applications. The version of boost

provided by the OS is rather old. Newer version is available under /opt/soft/ and are available through the

environmental modules system.

2. TBB: Intel Threading Building Blocks. TBB enables the C++ programmer to integrate (shared memory) parallel

capability into the code. Available as part of the Intel Compiler Suite.

3. IPP: Intel Integrated Performance Primitives (IPP). The IPP API contains highly optimized primitive operations

used for digital filtering, audio and image processing.

4. PAPI: The Performance Application Programming Interface is a library for reading performance event counters

in a portable way.

4.10. Other software

Other popular packages are available system-wide. For example – R, cmake, gnuplot.

Environment modules

• Please use module avail on Avitohol to obtain a comprehensive list of environment modules.

• In most cases only the latest/current production version (as of March 2016) of software packages are offered via

the module environment.

Default Fortran data type size

Some Fortran programmers use e.g. 32 bit floats in the source code (REAL) and map these to 64 bit floats (REAL*8) at

compile time. The corresponding compiler flag for the Intel Fortran compiler is -r8.

5. Programming Tools

To access the software described below please use the module command (module avail, module load).

5.1. Debugging

• Compiler options: Compilers usually have some debugging features which allow e.g. to check violations of

array boundaries. Please consult the compiler's manual pages and documentation for details.

• gdb, the GNU debugger.

• Intel Inspector enables the debugging of threaded applications.

11

• If debugging features will not be used, the executable can be stripped of debugging information by running

strip.

5.2. Profiling and Performance Analysis

• Intel VTune/Amplifier is a powerful tool for analyzing the single core performance of a code.

• gprof, the GNU profiler.

• Intel Trace Analyzer and Collector is a tool for profiling MPI communication.

• Scalasca enables the analysis of MPI/OpenMP/hybrid codes.

• Optimised executables can be obtained by first compiling for profile generation (option -prof-gen for Intel, --

fprofile-generate for gcc) and then running the executable and using the generated profile with options like

o -prof_use -prof_dir ./profdir for Intel

o '-fprofile-use - for gcc, sometimes it is necessary to add -fprofile-correction or -flto-partition=none

Further reading

For more information related to Section 5, “Programming Tools” please refer to the Avitohol website:

• http://www.hpc.acad.bg/systems/avitohol/index.php/system-1

6. Conclusion

The Avitohol system is relatively new, but is already equipped with a rich set of development tools, libraries and

software. Users that require additional tools or software to be installed or upgrades to existing software should

contact the support team at avitohol-support@parallel.bas.bg.

